miércoles, 23 de noviembre de 2011

convergecia de la informatica

https://docs.google.com/spreadsheet/viewform?formkey=dGNxM1hEeE1xWWpCRGJQU2M3bFZ2cnc6MQ

martes, 6 de abril de 2010

7. Concepto de TGS, Sistema, elementos de un sistema, entropía

 
La Teoría General de Sistemas (T.G.S.) surgió con los trabajos del biólogo alemán Ludwig von Bertalanffy, publicados entre 1950 y 1968.
Las T.G.S. no busca solucionar problemas o intentar soluciones prácticas, pero sí producir teorías y formulaciones conceptuales que puedan crear condiciones de aplicación en la realidad empírica. Los supuestos básicos de la teoría general de sistemas son:
a) Existe una nítida tendencia hacia la integración de diversas ciencias no sociales.
b) Esa integración parece orientarse rumbo a una teoría de sistemas.
e) Dicha teoría de sistemas puede ser una manera más amplia de estudiar los campos no-físicos del conocimiento científico, especialmente en las ciencias
d) Con esa teoría de los sistemas, al desarrollar principios unificadores que san verticalmente los universos particulares delas
diversas ciencias involucradas nos aproximamos al objetivo de la unidad de la ciencia.
e) Esto puede generar una integración muy necesaria en la educación científica
La teoría general de los sistemas afirma que las propiedades de los sistemas no pueden ser descritas significativamente en términos de sus elementos separados. La comprensión de los sistemas solamente se presenta cuando se estudian los sistemas globalmente, involucrando todas las interdependencias de sus subsistemas.
La T.G.S. Se fundamentan en tres premisas básicas, a saber:
A)Los sistemas existen dentro de sistemas.
Las moléculas existen dentro de células las células dentro de tejidos, los tejidos dentro de los órganos, los órganos dentro de los organismos, los organismos dentro de colonias, las colonias dentro de culturas nutrientes, las culturas dentro de conjuntos mayores de culturas, y así sucesivamente.
B ) Los sistemas son abiertos.
Es una consecuencia de la premisa anterior. Cada sistema que se examine, excepto el menor o mayor, recibe y descarga algo en los otros sistemas, generalmente en aquellos que le son contiguos. Los sistemas abiertos son caracterizados por un proceso de intercambio infinito con su ambiente, que son los otros sistemas. Cuando el intercambio cesa, el sistema se desintegra, esto es, pierde sus fuentes de energía.
C) Las funciones de un sistema dependen de su estructura.
Para los sistemas biológicos y mecánicos esta afirmación es intuitiva. Los tejidos musculares, por ejemplo, se contraen porque están constituidos por una estructura celular que permite contracciones.
No es propiamente las TES. , Sino las características y parámetros que establece para todos los sistemas, lo que se constituyen el área de interés en este caso. De ahora en adelante, en lugar de hablar de TES., se hablará de la teoría de sistemas.
El concepto de sistema pasó a dominar las ciencias, y principalmente, la administración. Si se habla de astronomía, se piensa en el sistema solar; si el tema es fisiología, se piensa en el sistema nervioso, en el sistema circulatorio, en el sistema digestivo;
La sociología habla de sistema social, la economía de sistemas monetarios, la física de sistemas atómicos, y así sucesivamente.
El enfoque sistemático, hoy en día en la administración, es tan común que casi siempre se está utilizando, a veces inconscientemente.


http://bparraga.files.wordpress.com/2008/09/conceptos-tgs1.jpg


2. concepto de sistemas
La palabra "sistema" tiene muchas connotaciones: un conjunto de elementos interdependientes e ínteractuantes; un grupo de unidades combinadas que forman un todo organizado y cuyo resultado (output) es mayor que el resultado que las unidades podrían tener si funcionaran independientemente. El ser humano, por ejemplo, es un sistema que consta de un número de órganos y miembros, y solamente cuando estos funcionan de modo coordinado el hombre es eficaz. Similarmente, se puede pensar que la organización es un sistema que consta de un número de partes interactuantes. Por ejemplo, una firma manufacturera tiene una sección dedicada a la producción, otra dedicada a las ventas, una tercera dedicada a las finanzas y otras varias. Ninguna de ellas es más que las otras, en sí. Pero cuando la firma tiene todas esas secciones y son adecuadamente coordinadas, se puede esperar que funcionen eficazmente y logren las utilidades"
Sistema
Es "un todo organizado o complejo; un conjunto o combinación de cosas o partes, que forman un todo complejo o unitario"

3. elemento de un sistema

Todo sistema está constituido por partes que pueden o no ser sistemas (subsistemas). Los elementos o componentes de un sistema deben relacionarse entre sí, de lo contrario, no es un sistema (ver holismo y sinergía).

Por ejemplo, una computadora, desde el punto de vista de sistema, está constituido por múltiples partes. Algunas de esas partes son subsistemas como discos rígidos, placa madre, unidad de CD, etc. y partes simples que no son sistemas como tornillos, remaches, etc.

Un sistema es más complejo, mientras más partes y más interconexiones existan entre esas partes. Como resultado de esas interacciones entre los elementos, surgen propiedades nuevas (propiedades emergentes) que no pueden explicarse analizando esos elementos de forma aislada. Por esta razón, mientras más elementos tenga un sistema, más propiedades "inesperadas" puede llegar a tener

4. concepto de antropia 




El concepto de “entropía” es equivalente al de “desorden”. Así, cuando decimos que aumentó la entropía en un sistema, significa que creció el desorden en ese sistema. Y a la inversa: si en un sistema disminuyó la entropía, significa que disminuyó su desorden.
La palabra entropía procede del griego (ντροπία) y significa “evolución o transformación”. La formulación matemática de la variación de entropía de un sistema, luego de una transformación o evolución entre los estados inicial y final del mismo, se corresponde con la integral definida entre el instante inicial y final de los incrementos o diferenciales del componente o sistema en evolución, divididos por la cantidad de elementos que van integrando al componente o sistema en cada instante. Así:
La resolución matemática de la integral planteada para la determinación de la variación de la entropía de un sistema entre los estados inicial y final, resulta ser el logaritmo natural de uno (1) (cantidad de componentes o sistemas resultantes en el instante final), dividido por la cantidad de elementos que fueron integrados al componente o sistema resultante entre los instantes inicial y final de la evolución.
La medida de la entropía permite establecer el “orden” que posee un sistema en determinada instancia, respecto al que poseía o pudo haber poseído en otra. Así, podría determinarse la diferencia de “entropía” para la formación o constitución de un sistema a partir de sus componentes desagregados, y también para cualquier proceso que pueda ocurrir en un sistema ya constituido.
El “orden” que adquirió un sistema en su constitución puede medirse por la diferencia entre la “entropía” del sistema constituido, y la que supuestamente poseía cuando todos los N “entes físicos” elementales que lo componen, existían desagregados e indiferenciados en el nivel de referencia correspondiente al primer nivel de agregación. En dicho nivel, la entropía para cualquier conjunto de una cantidad finita N de “entes físicos” desagregados, resulta igual a 0 (cero), a saber:
Es (0) = N • = N • ln 1 = N • 0 = 0 (cero)
La variación del “orden” en un sistema ya constituido se determina por la diferencia entre la medida de la “entropía” del sistema para los instantes inicial (o) y final (f) de un proceso en estudio. Para ello, se debe considerar la “entropía” de todos los “componentes” existentes dentro del sistema, tanto la de los “componentes” que constituyen el sistema en sí, como la “entropía” de los “componentes de flujo” que circulan por el mismo.



fonte.
http://virtue1.files.wordpress.com/2008/05/3-entropia.jpg


 AUTOR: KELVIN CAUSIL